HAP-Free Intumescent Coatings for Protection of Munition Containers

Chris Mealy, P.E. Noah Lieb, P.E. Hughes Associates, Inc. Under contract W911QX-08-F0204 to The Army Research Laboratory

HUGHES ASSOCIATES, INC. FIRE SCIENCE & ENGINEERING

Approved for public release; distribution is unlimited

Background

- n Collaborative Research with Army Research Lab (ARL)
- n Purpose
 - uProvide capability for new or existing coatings to improve munitions response to IM threats
 - Mainly focus on fast cook off with impact considerations
- n Result

uCoating formulation and technologies for IM design
 uDemonstration of integrated technologies for improved IM behavior of packaged munitions

n Payoff

uImproved tactical and combat system survivability uReduced transportation and storage burden

Technical Approach

- n Material research, technology survey, material testing and analysis
- Evaluation of coatings to determine if it meets IM criteria
 u Evaluated certain coatings with polyurea over-coating
- n Down-selection and evaluation testing
 u 21 potential candidates
- n Full scale testing u 4 potential candidates

Intumescent Coatings

- n Material expands when exposed to heat
 - u 🛧 volume
 - u 🛡 density
 - u Thermal insulation layer
 - u Reduce heat transfer
 - u Prevent/Delay escape of fuel
- n Provides durable and attractive surface, similar to a paint finish
- n Drawback
 - u Char has degraded mechanical properties
 - u Optimal when char is homogeneous
 - u Added weight and cost

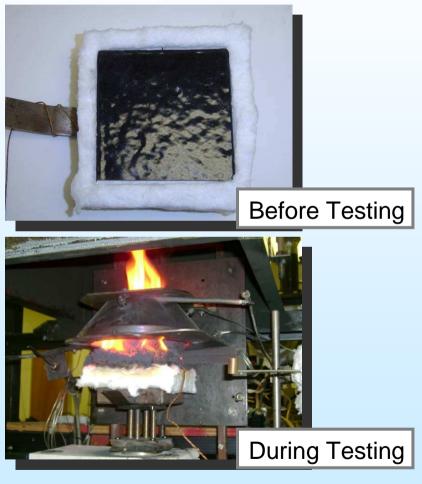
Coatings Evaluated

n Ballistic coatings n ARL formulation Low VOC n Various commercial HAP-Free products 21 10:56 AI 5

Coating Application Techniques

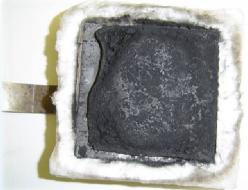
- n Ballistic and ARL coating formulations applied by ARL
- Commercially available coatings trowel-applied per manufacturer specifications in laboratory environment
- Measured coating thicknesses ranged from
 1.5 5.0mm (~ 40 200 mil)

Performance Tests


n Thermal Tests

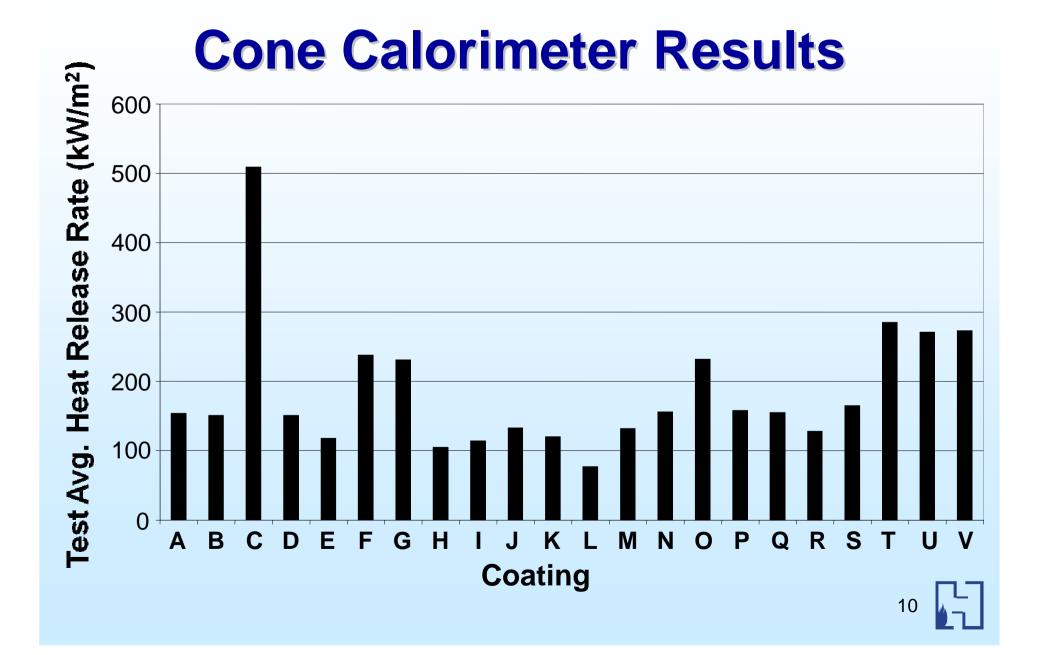
- u Cone Calorimeter
- u Burn Through
- u Thermal Conditioning-Drop Test
- u UL 1709 Furnace Exposure
- u Slow Cook Off
- n Ballistic

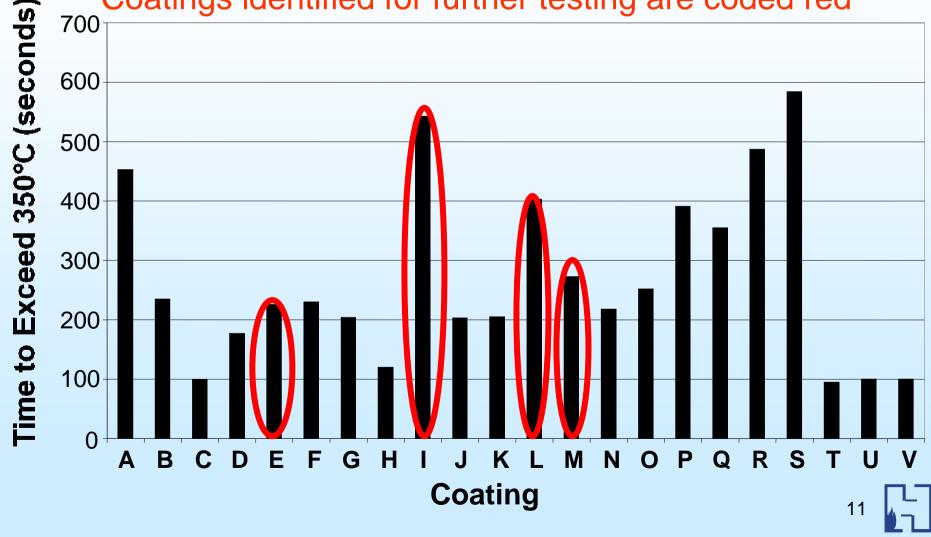
- n Rough Handling Tests
 - u AcceleratedCorrosionResistance Testing
 - Impact ResistanceTesting
 - u Humidity Testing
 - u Water Immersion Resistance

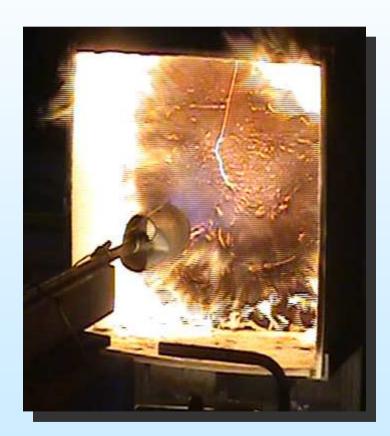

Small-Scale Screening Tests

- Initial screening tests performed using cone calorimeter with 4in. x 4in. samples
- Small-scale test apparatus capable of providing consistent, uniform exposures via radiant heating element
- Incident heat flux of 100kW/m² used to simulate relatively severe, rapid heating exposure

Cone Calorimeter Results

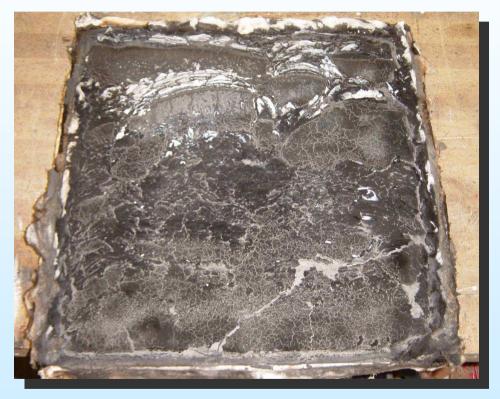





Cone Calorimeter Results

Coatings identified for further testing are coded red

Intermediate-Scale Screening Tests

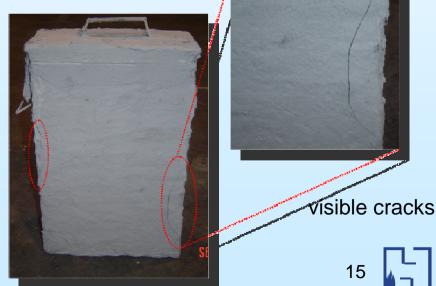

- Burn-through test apparatus used to evaluate down-selected coatings
- n Tests conducted in accordance with MIL-STD-2031 App. B David Taylor Research Center Burn-Through Fire Test utilizing direct flame impingement
- n Thermal exposure equivalent to approximately 200 kW/m²
- n 18in. square samples used
- n Insulation performance evaluated via backside temperature measurements

12

Burn Through Test Results

- n All coatings performed well, except coating I
- Poor adhesion to steel after thermal exposure
- Friable char identified as possible flaw due to tendency of char to slough off thus minimizing insulation performance of coating
- Turbulent conditions of fullscale, real-world fire scenario may exacerbate this problem

Full-Scale Test Method

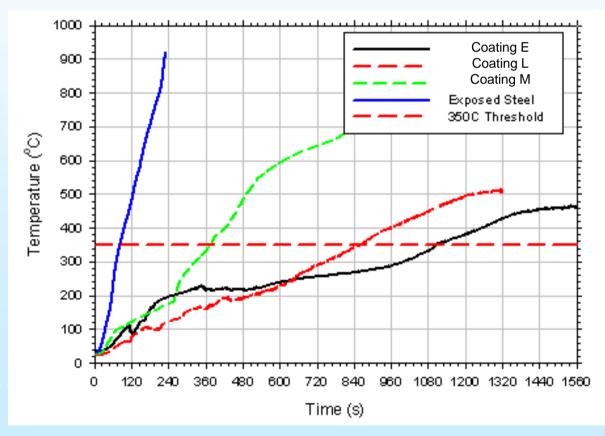

- n Three down-selected commercial coatings were then applied to 9 PA-124 munitions containers (3 each)
- n Loaded with eight, inert mortars
- n Containers were then subjected to thermal conditioning per MIL-STD-1904A Design and Test Requirements for Level A Ammunition Packaging
 - u Elevated Temperature: 160°F
 - u Ambient Temperature: 72°F
 - u Sub-Zero Temperature: -65°F
- n Following thermal conditioning, all containers were immediately drop tested and evaluated using the UL1709 *Standard for Rapid Rise Fire Tests* furnace exposure

Thermal Conditioning and Drop Testing

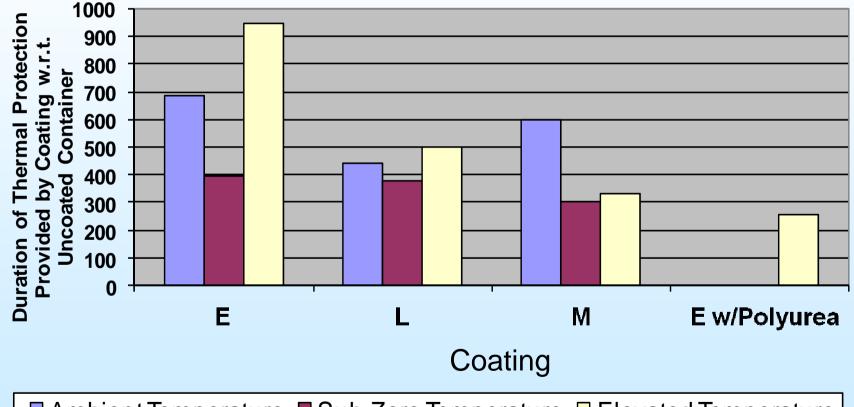
- n After being conditioned for 24 hrs, each container was dropped from an elevation of 7 ft on the largest face of the container
- n Sub-zero conditioning proved to be the most detrimental to durability of coatings Sub-Zero Conditioning

Intermediate- Scale Furnace

- After drop test, each container was exposed to UL1709 furnace fire
- n Test method designed to simulate hydrocarbon pool fire
- n T measurements collected at:
 - u Container Wall
 - u Mortar Tail
- n Internal T: 350°C
 - Ensures fast cook-off point was passed


UL 1709 Exposure Results

- n On average, intumescent coatings evaluated provided 7-14 minutes of thermal protection
- n More time before reaction in munitions


Intermediate Scale Furnace Results

Comparison of wall temperature at the right face of containers conditioned at ambient conditions

18

Intermediate Scale Furnace Results

Ambient Temperature Sub-Zero Temperature Elevated Temperature

19

Slow Cook Off

- n Tested coated PA-70 steel ammunition containers u One live munition
- n Simulate munition response when energetic material cook-off in adjacent room
 - u Type I (Detonation)
 - u Type II (Partial Detonation)
 - u Type III (Explosion)
 - u Type IV (Deflagration Reaction)
 - u Type V (Burning)
 - u Type VI (No Reaction)

Slow Cook Off Results Results

- n Containers ruptured
- n Some coatings caught fire

Coating	Ten	nperature (°C	Container		
	Air	Mortar	Container	burn time (sec)	60 mm RXN
E	360[182.2]	295[146.1]	332[166.7]	504	Type V, Burn
Н	348[175.6]	286[141.1]	326[163.3]	165	Type V, Burn
Ι	338[170]	288[142.2]	325[162.8]	260	Type V, Burn
M	340[171.1]	NA	345[173.9]	902	Type V, Burn
L	354[178.9]	308[153.3]	347[175]	30	Type V, Burn

Ballistic V50 Test

- n MIL-STD-662 V50 Ballistic Test for Armor
- n 11.75" x 4.00" x 0.030" piece of steel
- n 0.22 caliber bullet weighing 1.1 grams
- n 2024 T-3 AI witness sheet behind sample

<u>Results</u>

- n Slight improvements in ballistic protection
- n Some coatings adhere to steel better

Ballistic V50 Test Results

ſ

Construction	Thickness (mm[in])	% Increase	Weight (lbs)	Area (ft ²)	Areal Density (lb/ft ²)	% Increase	V50 (ft/sec)	% Increase	Spread (ft/sec)
Polyurea	3.68[0.145]	383	0.609	0.326	1.87	52	890	59	33
E w/ topcoat 1	2.8[0.11]	267	0.563	0.326	1.73	41	833	49	28
E w/ topcoat 2	3.10[0.122]	307	0.571	0.323	1.78	45	765	37	28
Е	4.88[0.192]	540	0.699	0.326	2.14	74	850	52	36
В	3.45[0.136]	353	0.582	0.326	1.79	46	791	41	42
А	5.21[0.205]	583	0.693	0.326	2.13	73	927	66	17
Ι	5.08[0.2]	567	0.695	0.326	2.13	73	973	74	29
E /Polyurea	1.09[0.043]	43	0.43	0.326	1.32	7	660	18	4
Е	2.49[0.098]	227	0.556	0.326	1.71	39	835	49	7
Bare steel	0.76[0.03]	0	0.401	0.326	1.23	0	560	0	29

Rough Handling Tests

- n Performed on coatings E, E w/polyurea, I, L, M
- n ASTM B117/GM 9540P: Accelerated Corrosion Test
 - u Polyurea performed best
- n ASTM D2794: Impact Resistance Test
 - u E did not perform as well as others
- n 70±3°C (158±5.4°F) @ 95±5% RH: Humidity Test
 - u 10 days- all coatings passed
 - u 21 days- E was terminated, blistering and moisture retention
 - u 10 weeks- E w/Polyurea, L, M terminated, loss of gloss
- n ASTM D1308-02: Water Immersion Resistance Test
 - u E w/Polyurea showed most color change

Technical Challenges

- n Coating delamination
 - u Cracking and chipping
 - Rough Handling esp. at extreme temp
- n Impact resistance
- n Flexibility
- n Moisture resistance
- n Material compatibility
- n Cost

Next Step

n Need to continue research on potential coatings/ system

n Need a full protection system

- u Ballistic
- u Fire/Thermal
- u Weathering/Rough Handling

Thank you to the following people for their technical support

n ARL

- u Pauline Smith
- u Kevin Boyd
- u Pete Dehmer
- u Rachel Ehlers
- u John Escarsega
- n Hughes Associates, Inc
 - u Art Parker
 - u Bill Ruppert
 - u Carol Wong

Questions?

Contact:

Chris Mealy 410-737-8677 x224 cmealy@haifire.com

